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Abstract  Thresholds were measured for detecting spatial luminance modulation in regular lattices of
visually discrete dots. Thresholds for modulation of a lattice are generally higher than the corresponding
threshold for modulation of a continuous field, and the size of the threshold clevation, which depends
on the spacing of the lattice elements, can be as large as a one log unit. The largest threshold elevations
are seen when the sample spacing is [2 min arc or greater. These results are similar to those observed by
Burr, Ross and Morrone [Vision Research, 25, 717-727 (1985)], who proposed an explanation based on
a compressive point nonlinearity. Although their explanation is not consistent with the present data, the
results may be explained in terms of nonlinear saturation of a spatially opponent stage early in the visual
pathway. Theories based on response compression cannot explain the further observation that the
threshold clevations due to spatial sampling are also dependent on modulation frequency: the greatest
clevations occur with higher modulation frequencies. The idea that this is due to masking of the

0042-6989/91 $3.00 + 0.00
Pergamon Press plc

modulation frequency by the spatial frequencies in the sampling lattice is considered.

Spatial modulation sensitivity Sampling

INTRODUCTION

It has been suggested that the early stages of
the visual system act like a set of filters, each
tuned to a particular band of spatial frequencies
(Campbell & Robson, 1968), and a large body
of evidence has accumulated supporting this
view (for a review sce Olzak & Thomas, 1986).
Many of the studies supporting this view have
cmployed  sinusoidal luminance gratings as
stimuli. The mathematical properties of gratings
make them useful for investigating linear aspects
of the visual system, but there are a number of
casily observed visual phenomena which display
clearly nonlincar properties. Filter-bank type
models of the visual system, such as those of
Wilson and Bergen (1979), have usually been
designed to predict threshold data; they must be
embellished in order to predict the appearance
of suprathreshold aspects of objects, such as
brightness or apparent contrast (Georgeson &
Sullivan, 1975).

The Craik Cornsweet illusion (Cornsweet,
1970, p. 273) is an example of how a small, local
feature (a high-pass filtered edge) can exert an

*Present address: NASA/Ames Rescarch Center, Mail Stop
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Spatial masking

effect on the subjective brightness of distant areas
although there are no low-frequency Fourier
components in the pattern. Land’s retinex model
of color appearance (Land & McCann, 1971)
similarly stresses the importance of sharp edges
and allows them to act over arbitrarily large
distances. Sharp edges also seem to play an
important role in the “filling in” of retinally
stabilized images.

In our earlier work, we reported how the den-
sity of texture elements could produce illusory
changes in the brightnesses of the elements
(Mulligan & MacLeod, 1988), and that in certain
regimes observers could not distinguish lumin-
ance modulation from density modulation at
threshold. In this paper we look in more detail
at the luminance modulation thresholds for
arrays of visually discrete elements, and compare
the findings with existing models of contrast
threshold and masking.

PROCEDURE

Stimuli consisted of one-dimensional sinu-
soidal luminance gratings. The gratings could be
presented in two distinct modes: continuous (the
usual stimuli for measuring contrast sensitivity)
and sampled. The sampled case may be likened
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Fig. 1. Diagram of a portion of a sampling array defining

the terms sample spacing (center-to-center distance between

ncarest neighbors) and sample size (linear height and width
of a single square element),

lo viewing a continuous grating through an
opaquc screen perforated with a regular array of
small apertures. Thus sampling has the effect of
reducing the overall spacc-average luminance
(by a factor corresponding to the fraction of
the total area occupied by the samples) and
of restricting the information concerning the
stimulus grating Lo the samples. The experiments
described here used a sample array which con-
sisted of small squares located on a regular
two-dimenstonal grid.
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Continuous gratings are characterized by
their spatial frequency, orientation, and contrast.
Sampled gratings require additional parameters
to describe the nature of the sampling array: the
sample size and shape, and the sample spacing.
The meaning of these terms is illustrated in
Fig. 1; sample spacing refers to the center-to-
center distance between nearest neighbors in the
lattice, while the sample size is the linear dimen-
sion of a single square element. It is sometimes
convenient to talk about the sample frequency,
which is just the reciprocal of the sample spacing.
The sample frequency should be at least twice
the grating or modulation frequency, in order to
avoid spatial aliasing, which would cause the
grating to appear at a much lower frequency.
A sampling frequency of exactly twice the
modulation frequency is generally known as
the Nyquist rate (Oppenheim & Schafer, 1975).
When sampling at the Nyquist rate, the relative
phase of the modulation and sample pattern
becomes important: if the samples fall at the
zero-crossings of the grating, no modulation will
be transmitted. The stimuli in these experiments
were always sampled at the peak and trough of
the modulation waveform (in the Nyquist limit),
and also at other points in the case of higher
sample frequencies.

The duty cycle of a sample array will be
defined to be the ratio of the sample size to the

(b)
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Fig. 2. (w) Intensity profiles for sampled gratings having the same modulation frequency, but different
sample frequencies. At top is shown a continuous sinusoidal grating; the dotted line indicates the zero
luminance bascline. Since the lowest point (trough) of the curve is halfway between the mean level and
the bascline, this grating has a modulation of 50%. Immediately below is shown a sampled grating having
the same modulation frequency and modulation depth, but sampled with eight samples per cycle. Also
shown are four cycles per sample and two cycles per sample (the Nyquist limit). Note that each sample
has a constant level (intensity) at cach point within its interior. Also note that the sample width is
proportional to sample spacing (constant duty cycle). These examples depict the duty cycle of 0.33 used
in the experiments. (b) Same as in (a), but the samples depicted herc are not uniform, but vary within
their interiors in accordance with the corresponding patch of continuous gratings. This stimulus was not
used in the experiments in this chapter, but is presented here to clarify the difference between the actual
stimulus and the colloquial description: this is the stimulus which actually corresponds to viewing a grating
through holes.
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center-to-center sample spacing. In the exper-
iments to be described, the duty cycle was kept
fixed at one-third. Although this procedure con-
founded sample size and sample spacing, it
allowed both the local sample luminance and the
space-average luminance to be held constant at
all sample spacings. The procedure thus allowed
the separation of the spatial effects of the
sampling operation from local effects dependent
upon absolute luminance.

Onc important way in which the sampled
stimulus differed from the analogy of viewing
a grating through holes was that cach sample
was spatially uniform. The luminance for each
sample was the same as the luminance of the
continuous grating at the location of the center
of the sample. This characteristic of the display
produced a significant deviation from the con-
tinuous grating profile only for the larger sample
sizes. Figure 2a shows the typical intensity pro-
files of rows of modulated samples for a variety
of sample spacings. To illustrate the difference
between the case of uniform samples (as used in
these experiments, and shown in Fig. 2a) and a
grating windowed, or viewed through holes, the
latter case is also shown in Fig. 2b.

Stimuli were produced on a color monitor
(Tektronix model 690SR), which received video
signals from a graphics terminal (Advanced
Electronic Devices model 767), which was in
turn controlled by computer (Digital Equipment
Corp. PDP 11/23). The display was viewed at a
distance of 3m, from which distance it sub-
tended 4 deg of visual angle. Digital quantization
errors in the rendering of the luminance profile
were limited by the video digital-to-analog con-
verter resolution (8 bits per phosphor). In order
to decrease these cerrors, the display was viewed
through a red filter (Kodak Wratten no. 26),
which had the effect of selectively attenuating
the light from the green phosphor. The smallest
test modulations could therefore be produced
by varying the output of the green phosphor,
with a high contrast background modulation
provided by light from the red phosphor. This
technique for reducing quantization errors has
been discussed by Mulligan (1986).

The continuous gratings and samples had a
mcan luminance of 20 ¢d/m?. The area surround-
ing the sample dots was dark. To see whether
observed differences between the sampled and
continuous cases were due to the overall lumin-
ance difference, the continuous sensitivities were
remeasured using a one-log unit neutral density
filter to reduce their space-average luminance

to a level comparable to that of the sampled
gratings.

Thresholds were determined by having sub-
jects discriminate between vertical and horizontal
modulations. The orientation of the modulation
was chosen at random for each trial. On each
trial, the subject was presented with a grating
whose orientation was selected at random; the
subject’s task was to correctly report the actual
orientation. Each stimulus was visible for one
second; the onset of the stimulus was preceded
by a fixation cross which appeared in the middie
of the (dark) screen one second before the
stimulus appeared, and remained visible during
the test interval. The jdeg square region con-
taining the fixation target was kept free of
sample dots. Modulation levels for successive
trials were determined in accordance with a
staircase procedure. The contrast was reduced
after two consecutive correct responses, and
increased after a single incorrect response, con-
centrating the trials near the contrast yielding
71% correct. Two staircases were randomly
interleaved for each condition to minimize the
amount of a priori information available to the
subjects about the presentation on any given
trial. A normal ogive anchored to 50% at zero
contrast was fit to the obscrved probabilities
using a weighted least squares regression, the
complete details of which are given in Mulligan
and MacLecod (1988). The weights were chosen
to correct for the fact that the numbers of trials
were not the same at each contrast, as well as the
fact that the expected variability in the obser-
vations depended on the true underlying prob-
ability. Since these probabilities could not be
known, we adopted an iterative procedure,
wherein the observed probabilities were used to
calculate the weights for the first iteration. The
resulting psychometric function was then used to
generate the weights for the second iteration.
This was repeated until the estimates converged.
Thresholds were taken to be the contrast for
which the final fitted curve assumed a value of
75%.

Different modulation frequencies and sample
spacings were run in different blocks of trials.
The blocks for the different conditions were
randomly interleaved, and each subject ran at
least three blocks for every condition.

RESULTS

Typical data showing sensitivity for two
different modulation frequencies as a function
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Fig. 3. Log sensitivity (reciprocal of threshold contrast) is
shown as a function of sample spacing for subject JBM.
Dhata points connected by solid lines are for a modulation
frequency of 0.625 ¢/deg; dotted lines connect data points
for 2.5 ¢/deg. The point on the abscissa labeled ‘C’ is for
continuous gratings having a mean luminance equal to the
mean sample luminance of the sampled gratings. Reduction
of the mean luminance of the continuous stimuli to equal the
space-itverage mean luminance of the sampled gratings
produces only small changes in the continuous sensitivities
(sce text). Sensitivity is based on amplitude of sampled
wavelorm (which differs from the amplitude of the Fourier
component at the modulation frequency when sampling at
the Nyquist rate). Error bars represent +2 SEM, computed

between sessions.

of sample spacing is shown in Fig. 3. The point
labeled “C™ shows the sensitivity for modu-
lation of a continuous field. The data show that
sensitivity is unchanged, relative to continuous,
for the smallest sample spacing; coarser sampling
produces progressive losses of sensitivity. It is
important to note that at the smallest sample
spacing (3 min arc) the sample elements are still
scen distinetly; thus the effects seen at coarser
spacings cannot be due to changes introduced
by sampling per se, such as the reduction in
mean luminance or the introduction of black
regions. For both frequencies shown, a sample
spacing of 12 min arc is sufficient to produce the
maximum scnsitivity loss.

Sensitivity, as plotted in Fig. 3, is defined as
the reciprocal of the threshold contrast. For the
sampled gratings, the contrast was defined as
the peak-to-trough amplitude divided by the
mean sample luminance. Defined this way, a
sampled grating always has the same contrast
as the continuous grating behind the “holes”.
A discrepancy arises, however, if we redefine
contrast based on the amplitude of the Fourier
component at the modulation frequency.
Figure 4 shows a plot of the amplitude of the
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Fig. 4. Amplitude of the Fourier component at the funda-
mental modulation frequency as a function of the number
of samples per cycle. Amplitudes are normalized relative to
a continuous grating having the same mean luminance and
contrast. The graph shows that sampling only affects the
amplitude of the Fourier fundamental when sampling at two
cycles per sample, where the amplitude of the fundamental
roughly doubles. The solid curve is for uniform samples
(as in Fig. 2a, the stimuli for these experiments), while
the dotted lines link points for a windowed grating (as in
Fig. 2b).

Fourier fundamental as a function of sample
frequency. We see that this is almost independent
of sample frequency except at the Nyquist limit,
where it has approximately doubled. This is due
to the fact that for Nyquist rate sampling, the
aliases introduced by sampling have the same
frequency as the signal, and can interfere either
constructively or destructively depending on
the relative phases of the sampling array and the
modulation. The signal is maximized when the
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Fig. 5. The data from Fig. 3 are replotted with sensitivity

redefined in terms of the amplitude of the Fourier com-

ponent at the fundamental modulation frequency. Only the

rightmost points of each curve are affected. This correction

eliminates the nonmonotonicity seen in Fig. 3 for the
0.625 c/deg curve.
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samples are placed at the peak and the trough
(as in our stimulus). Note that if the samples are
placed at the zero crossings of the grating, then
there is complete destructive interference.

If we redefine sensitivity based on the recipro-
cal of the amplitude of the Fourier fundamental,
the data shown in Fig. 3 would appear as shown
in Fig. 5. Plotting the data this way eliminates
the nonmonotonicity seen with the 0.625 ¢/deg
grating at sample spacings greater than 0.2 deg.

Figure 6a shows sensitivity for sampled
modulation (at 12 min sample spacing) and for
continuous sinusoidal gratings plotted against
modulation frequency. The data show that the
sensitivity loss caused by sampling increases with
increasing spatial frequency, becoming almost
I log unit at 2.5 ¢/deg. The sensitivities for the
sampled case were calculated on the basis of
pcak-to-pcak amplitude, as in Fig. 3. The data
may be replotted (Fig. 6b) using the sensitivity
based on the amplitude of the Fourier funda-
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Fig. 6. (1) Log sensitivity for a single observer is plotted as
a function of modulation frequency for continuous gratings
(solid lines) and gratings sampled with a sample spacing of
12 min (dotted lines). Sensitivity is lower for the sampled
gratings, and the loss increases with increasing modulation
frequency. Error bars represent +2 SEM, computed be-
tween sessions. (b) The same data as in (a) is plotted with
sensitivity defined in terms of the amplitude of the Fourier
component at the fundamental modulation frequency. Only
the rightmost point on the sampled curve is affected.
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mental; the only effect is to increase the sensi-
tivity loss measured at 2.5c¢/deg from 1.02 to
1.30 log units.

Reducing the mean luminance of the continu-
ous gratings by a factor of 10 (with an optical
filter) caused only a small loss of sensitivity for
the spatial frequencies of interest, consistent
with the results of Van Nes and Bouman (1967)
for the range of mean luminances tested. For
subject JBM, sensitivity was reduced by 0.23 log
units (SEM = 0.021, between sessions) at a
spatial frequency of 2.5c/deg, and 0.046 log
units (SEM = 0.015) at 0.625 c¢/deg.

Data for two additional subjects is shown in
Fig. 7. These data were collected using a slightly
different methodology, which is described in
complete detail elsewhere (Mulligan, in prepar-
ation). A different technique was used to control
quantization errors, which did not require the use
of a red filter. This allowed a higher luminance
to be used: the samples had a mean luminance
of 120 cd/m? the continuous gratings were
viewed through a one-log unit neutral density
filter to equate space-average mean luminances.
Subjects used the method of adjustment to set
thresholds. Six settings per point were made
during each session, which were randomly inter-
leaved with a number of additional conditions
which are not discussed here. Each subject com-
pleted three sessions; a mean was computed for
each session. The mean across sessions is plotted
in Fig. 7, with the error bars showing +2 SEM
computed between sessions.

DISCUSSION
FElevation of threshold with coarse sampling

One of the major findings of this study is
the clevation of contrast thresholds seen with
increasing sample spacing. This result is not
predictable on the basis of the physical limits
on the information content in the stimulus; it
can be shown that if detection were limited by
photon noise statistics, we would expect to
observe a constant threshold for the amplitude
of the Fourier fundamental in the sampled
stimulus regardless of the sample spacing (see
Appendix). To explain the result, we can appeal
to a mechanism suggested by data on increment
threshold for a small test flash as a function of
size of the background field (Westheimer, 1967;
Buss, Hayhoe & Stromeyer, 1982). Increment
threshold data are often displayed using a
threshold vs intensity (tvi) curve, where the flash
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threshold is plotted as a function of the intensity
of the background field. For large backgrounds,
the curve has an asymptotic slope close to 1
on a log-log plot, showing that the threshold
increment is proportional to the background
level, a “Weber’s law” relationship. This type of
relation may be interpreted in terms either of a
gain-control mechanism or of an approximately
logarithmic nonlinearity, followed by a source
of constant noisc, with the threshold being met
by cxceeding a critical signal-to-noise ratio.

When such an cxperiment is done against a
tiny (say, 5 [dmin arc in diameter) adapting
background, however, quite a different result is
observed. The tiny background has a much
greater desensitizing cffect than a larger back-
ground having the same luminance, even though
fewer total quanta strike the retina. Not only is
the smaller background more effective, but at
some (moderate) luminance level the threshold
against the tiny background becomes infinite;
the background scems (o “saturate” the unit
responsible for detection of the test. Results
like this have been taken to be psychophysical
conscquences of the spatially opponent organiz-
ation physiologically observed in retinal ganglion
cells; a centrally excitatory zone ringed by an
inhibitory annulus produces a unit whose
response 1s relatively invariant under changes
in absolute illumination level for spatially
uniform stimulation.

Similar considerations of spatial opponency
in carly visual processing can help to explain the
loss of sensitivity for coarsely sampled modu-
lation. When the sample spacing is small, a
spatially opponent unit will have some samples
falling on its excitatory center, and others falling
on its inhibitory surround. This results in a
balanced state of excitation with adequate
dynamic range to signal small changes in the
amount of excitation or inhibition. Sample spac-
ings which are large in relation to the dimensions
of the receptive ficld will produce a state of affairs
where most units will have only a single sample
falling on their receptive field. If this sample falls
entircly in an cxcitatory or inhibitory zone, the
unit will be driven to an extreme of its response
range, where it has poor differential sensitivity.
If, on the other hand, the sample falls on the
border between the excitatory and inhibitory
zones, the unit’s response will be maintained in
the middle of its operating range; small modu-
lations of the sample’s luminance, however, will
now not modulate the unit’s output, since the
modulations are seen both by the center and the

surround, with cancelling effects. In either case,
the sampling operation should lead to reduced
sensitivity.

Thus we see that center-surround antagonism
can qualitatively account for some of the results
we have observed, if we assume that the small
concentric units responsible for the Westheimer
effect are involved in the detection. This idea
can be tested more rigorously by estimating the
receptive field dimensions implied by our results,
and comparing them to estimates obtained using
other experimental paradigms. Westheimer’s
results (1967) suggest a surround diameter of
10 min arc in the central fovea. Ransom-Hogg
and Spillmann (1980) performed similar exper-
iments at various eccentricities; their data
obtained at 5 deg temporal eccentricity suggests
a surround diameter of about 1 deg. Since our
experiments were performed using a centrally-
fixated 4-deg field, we expect that the relevant
receptive field size should have an intermediate
value, in the range of 20- 30 min. Qur results
(see Fig. 5) show no impairment of sensitivity at
a sample spacing of 3 min arc, with progressive
degradation up to 12 min. Assuming that maxi-
mal desensitization cannot occur until flanking
dots are clear of the surround, the results shown
in Fig. 5 suggest an upper bound on the surround
radius of 0.2deg, in good agreement with the
results obtained from Westheimer’s paradigm.
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Fig. 7. Log threshold elevation as a function of sample
spacing is shown for two additional subjects. The modu-
lation frequency was 2.5 ¢/deg. Thresholds were obtained
using method of adjustment, cach subject completed three
sessions, cach consisting of six settings per point. The error
bars represent +2 SE of the between sessions mean.
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The data from the other subjects, shown in
Fig. 7, suggest the same surround size to the
cxtent that this crude cstimate permits.

Burr, Ross and Morrone (1985) have reported
sensitivity losses when a sinusoidal grating is
discretely sampled by concentrating the light flux
from the grating into thin lines parallel to the
bars of the grating. They explained their results
in terms of a local gain-control mechanism. One
potential problem with their study, avoided in
the present experiments, was the confounding of
sample spacing with sample luminance. Since
the results described here show strong effects
of samplec spacing even when local luminance
is constant, the conclusions of Burr et al. con-
cerning their own data must be reconsidered.
Burr et al. plotted their results as a function of
samples per cycle of modulation, which, because
of their procedure, was inversely proportional
to sample luminance. This obscures the effects
of absolute sample spacing. However, when
curves are drawn through their data linking
points having the same absolute sample spacing,
their results are similar to those shown in Fig. 6.
Local gain-control may play a role in determin-
ing modulation sensitivity for sampled displays,
but any mechanism that does not have a spatial
component cannot produce a dependence of
sensttivity on sample spacing or on modulation
frequency; effects of both parameters are seen in
the present study.

We have relied upon saturation of a spatially
opponent  unit to cxplain the elevation of
threshold due to sampling. Another possible
explanation, however, is that the frequency
components introduced by the sampling lattice
act as a mask and thereby clevate the threshold.
Many cflects of this type have previously been
observed: measurements of the critical band
suggest a channel bandwidth of one or two
octaves (Stromeyer & Julesz, 1972; Henning,
Hertz & Hinton, 1981). Although this could
account for the increase in threshold for the
highest modulation frequency, the sampling
frequency is well outside of the critical band for
the lower modulation frequencics. The masking
model of Wilson, McFarlane and Phillips (1983)
similarly predicts little masking of a 2 ¢/deg test
by a 10c¢/deg mask, whereas we observe a 0.5
log unit loss of sensitivity for a sampled 2.5 ¢/
deg grating with a 6-min sample spacing (10
samples/deg). Thus we are forced to conclude
that this type of masking alonie cannot account
for all of our data. One feature of the model of
Wilson et al. 1s a parallel bank of spatial filters,

tuned to different spatial frequency bands. We
propose that this split into spatial channels is
preceded by a concentric spatially opponent layer
(perhaps in the retina) which is responsible for
the threshold elevations which we see which
cannot be explained by critical band masking.
It is interesting to note that Henning et al.
(1981) proposed a similar two-stage model to
account for masking by amplitude-modulated
gratings.

Another piece of cvidence consistent with
the saturation hypothesis comes from similar
experiments of Mulligan and MacLeod (1988),
where a modulation could either be applied to
the samples (as in the present experiments) or to
the background (which, unlike the present ex-
periments, had some small nonzero luminance).
Under conditions which caused the largest
sensitivity reductions (coarse sampling, high
modulation frequency), the threshold elevations
were from 2 to 4 times greater when the modu-
lation was applied to the samples than when
it was applied to the background. Since the
modulations were at threshold, the mask was
approximately the same in either case, and the
results cannot therefore be explained in terms
of simple masking. The fact that observers arc
less sensitive to modulation of the samples is
consistent with saturation of the units convey-
ing the samples’ luminances, while the units
responding to the background remain relatively
sensitive.

Dependence of threshold elevation upon modu-
lation frequency

Although saturation of spatially opponent
neurons can explain the observed relation
between threshold elevation and sample spac-
ing, it does not predict the dependence of the
clevation on modulation frequency shown in
Fig. 6. One explanation for the dependence of
threshold elevation on modulation frequency is
that the masking effect seen at low modulation
frequencies (which we have assumed to be due
to a saturating spatially opponent unit) is aug-
mented at higher modulation frequencies by
traditional critical band masking of the modula-
tion signal by the spatial frequency components
introduced by the sampling operation. The fun-
damental component of these added frequencies
has a period equal to the sample spacing; this is
always higher than the modulation frequency,
but is closest for the highest modulation fre-
quency. Because the masking effects normally
increase with proximity in frequency, the present
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observed dependence on modulation frequency
is to be expected, at least qualitatively.

We can make a slightly more quantitative
prediction using the model predictions of Wilson
ct al. (1983). Their model predicts a sensitivity
loss of approximately a factor of 4 for a 2 ¢/deg
test on a 4 ¢/deg oblique mask of 40% contrast.
This mask s not probably somewhat weaker
than that used in our experiments, where the
sampling array had components at the same
orientation of the test, the effective contrast of
which was closer to 50%. Therefore it might be
reasonable to assume that critical band masking
is responsible for most of the 0.75 log units of
additional threshold elevation that is seen on
under coarsely sampled conditions when the
modulation frequency is raised from 1.25 to
2.5¢/deg (Fig. 6b).

Some evidence that sensitivity losses due to
sampling arc not simple masking effects comes
from the previously mentioned study done by
Burr et al. (1985). Using a slightly different
stimulus, they also observed sensitivity losses in
the presence of sampling. To rule out the possi-
bility of masking, they created a second stimulus
having the same power spectrum as the original,
but with scrambled phase relationships between
individual frequency components. The large
threshold clevations vanished under these con-
ditions. Tt might be argued that a scrambled
phase masker should have a weaker effect than
a particularly chosen mask of the same power
spectrum, since the scrambled phase mask will
have its energy distributed over most of the
units making up the tuned channel, while the
signal information will be carried by a subset of
the untts whose phase sensitivity matches the
signal. In this case, however, we would still
expect to see some residual masking effect of
the scrambled-phase masker, since some of the
mask cnergy would still be carried by the units
carrying the signal information. The data of
Burr ct al., however, show that there is little
threshold clevation due te the scrambled phase
mask; what effects remain are identical even
when the one-dimensional mask is rotated 90 deg
Additional results demonstrating the phase sensi-
tivity of masking have been demonstrated by
Henning, Hertz and Broadbent (1975), but the
effects are smaller than those observed by Burr
et al. Similar differences in masking efficacy
between masks which are either correlated or
uncorrclated with the target pattern have been
demonstrated by Rentschler, Hubner, Caelli
and Stoerig (1986).

General discussion

We have seen that the results presented in this
paper cannot be accommodated by a single tuned
filter which mediates detection, although critical
band masking may be part of the explanation
for the dependence of threshold elevation upon
modulation frequency. Similar conclusions have
been reached by Henning et al. (1975). Henning
et al. investigated the interactions between an
amplitude modulated grating having a moder-
ately high carrier frequency and a low-frequency
grating at the modulation frequency. (The
amplitude modulated stimulus is in some ways
analogous to what we have called a “sampled
grating”; the Fourier components in the
sampling lattice function as the carrier.) They
observed substantial masking effects between
frequency bands that appear to be independent
when probed with noise masks such as those used
by Stromeyer and Julesz (1972) and Henning
et al. (1981). One model proposed by Henning
et al. (1975) to explain their results consisted of
two stages, where units in the second stage
having large, spatially opponent receptive fields
received both a direct input and an input from
units in the first stage having small, spatially
opponent receptive fields. Thus, the second-
stage units responded both to low-frequency
modulation and to contrast modulation of a
high-frequency pattern capable of exciting the
first-stage units.

Spatial frequency analysis was also rejected
by Nyman and Laurinen (1982) to explain their
results concerning the perception of sparsely
sampled waveforms. They investigated discrim-
ination of sampled square and sine waves, and
found that performance was better than would
have been expected on the basis of the detect-
ability of the extra frequencies present in the
square-wave stimulus. They attributed their
findings to local feature analyzers. One point
they mention in passing, but do not discuss,
is that the discrimination becomes easier if the
viewing distance is increased. Increasing the
viewing distance increases both the grating
frequency and sampling frequencies propor-
tionately. This observation is interesting in
light of the results presented in this paper,
where we have seen that increasing sample
frequency improves the visibility of sampled
gratings.

In tuned filter models of modulation sensitivity
the stimulus is assumed to be detected when
some individual detector in the array reaches
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a threshold signal level. Another possibility,
particularly plausible for the sampled case, is that
detection is mediated by a spatial comparison
of the outputs of filters at different locations.
Detection of the sampled grating might be
mediated by a spatial comparison of the
brightnesses of various elements in the sample
lattice (based on signals representing the local
contrast or luminance of individual elements).
If we assume that threshold in the continuous
casc is not mediated by the same type of
brightness discrimination mechanism, then the
difference in the spatial frequency dependence
of the threshold in the sampled case may be
explained by assuming that signals contributing
to brightness undergo different spatial pro-
cessing. Experiments involving density modu-
lation of dot arrays have indicated that changes
in local dot density are sometimes perceived
as changes in dot brightness (Mulligan &
MacLeod, 1988). The results of these studies
indicate a large summation area for brightness,
roughly I deg in diameter. Such a mechan-
ism would be expected to increase threshold
for sampled modulation at high modulation
frequencies assuming that a brightness discrimi-
nation is involved in detecting the sampled
modulation but rot in the detection of continu-
ous gratings. This assumption seems reasonable
since an edge-detecting mechanism with good
spatial resolution which saturates at moderate
contrast levels would not see any difference in
the sample arrays when the modulation is ap-
plied, but could easily signal the presence of
light and dark grating bars in a continuous field.

In conclusion, sampling has been seen to
degrade contrast sensitivity when the sample
spacing is greater than or equal to 12 min arc.
The largest effects are seen with higher modula-
tion frequencies, where they can be as large as
one log unit. Response saturation of spatially
opponent units can explain the dependence of
the threshold elevation on sample spacing, and
the results of this study are in good quantitative
agreement with the results of previous studies.
The dependence upon modulation frequency,
however, cannot be explained by this mechan-
ism, but might be explained by an additional
critical band masking effect.
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APPENDIX

A Proof thar Detectability is Unaffected by
Sumpling Rate for an Ideal Observer

Definition of terms

Total number of quanta in one grating cycle.

Number of samples per grating cycle.

n, - Mean number of quanta in the ith sample when

signal not present (#, = T'/N).

Amplitude of sampled modulation as a fraction of

the mean (relative amplitude).

Expected or ensemble average signed increment in

the number of quanta at ith sample due to signal

modulation when present [s, = Angcos(2ni/N)).

&, = Noise at ith sample on the rth presentation, deviation
from expected number of quanta.

o, == Expected r.m.s. value of ¢, [0, = \/n, by assumptions
(1) and (2) below].

0, = Number of quanta observed at ith sample on the rth

presentation (o, =n, + 5, + ¢, when signal present,

0, = 1+ &, otherwise).

2z~

N

{

Our analysis is patterned after the approach of Green and
Swets (1966) to the ideal detector for the case when the
signal is known exactly. The proof depends on the following
assumptions: (1) that the mean number of quanta per
sample #, is large cnough that we may approximate the noisc
due to Poisson variability as a random variable having a
Gausstan distribution about a mean of zero with a variance
of n, (for the conditions of the experiments, assuming a
3 mm natural pupil, the total number of quanta absorbed
during a single stimulus presentation is on the order of 6
million); (2) that the noise at a given sample ¢, is indepen-
dent of 7 (and therefore uncorrelated with the signal s, and
with the noise at any other sample ¢,); (3) that s, < n, for the
near-threshold conditions of interest; this assumption allows
us to neglect the effect of the signal on o, With these
assumptions, we can show that the detectability of the signal
does not depend on N, the number of samples, for values
of N divisible by 4 (that is, for all the conditions of the
experiments except the Nyquist case).

An ideal observer will report the presence of the signal if
the likelihood ratio is greater than one. The likelihood ratio
is the ratio of two conditional probabilities: the probability
of making the observation in the presence of the signal
and the probability of making the same observation in the
absence of the signal.

To find the probability of making a particular set of
observations {0, } in the case of a particular signal {s,}, we
assume that the signal was present, and therefore any
deviations between the observed values and the signal must
be due to quantum fluctuations (o, = n, + s, + ¢,,). The prob-
ability of making the obscrvation {o,} in the presence of
the signal is just the probability of quantum’ fluctuations
producing the set of deviations {g, }.

Because we have assumed that the noise ¢;, has a Gaussian
distribution, we can write the probability of a particular
value tor ¢, as:

1 €2
P,) = xp <5 ) Al
() \/2nanexp<2af> (A1)

The probability for a given N-tuple {¢,} is simply the
product of N such terms. We can transform this product to
a4 sum by taking the natural logarithm; the log of the

probability of making the observation {o,} in the presence
of the signal, which we shall refer to as L, is therefore:

N
L,=K,— K Z [og — (1, 4+ 81 (A2)
i1

where

l
and K| = -

1
J2re, ) 202
We can similarly express the log of the probability that the
same set of observations {0, } would be made in the absence
of the signal:

K, = Nln(

N
Ly= Ky~ K Y (0, — ;). (A3)
fe=
Now the ideal observer bases his decision on the ratio of
the conditional probabilities, which is equivalent to taking
the difference of the logs of the probabilities; therefore, the
ideal observer will report seeing the signal if (L, — L,) > 0.
The proof will consist in showing that the sign of this
difference does not depend on N:

N N
Ly~ Ly= *Kl[ Z (0~ n— 5, — Z(Un - Il,)zJ
fan i=1

By expanding the squared quantities and cancelling terms
(taking out the leading minus sign in the process), this may
be expressed as

L,—L,=K, (Ad)

) N N
2% s(0,—n)— 3 \,’:|

i—1 i1

The second sum depends only on the signal; the first sum
represents the correlation between the observed numbers of
quanta and those cxpected if there is a signal. Let us first
consider the value of the sccond sum. For cosine phase
sinusoidal modulation s, = An,cos(2ni/N). By the symmetry
of the sine function, s, = —s, , »,; thercfore,

i

(AS5)

N N2 2ni
Y s2=24%} Zcos2<— - )
i1 i N

Since we have assumed that A is divisible by four, we may
break this sum into two halves:

s om W oni
" cos? + ¥ cosz< >}
7121 < N > ; I;NM N
42 z"f of 2mi 4 cos? 2r(i + N/4)\
=24°n cos?| - cos S,
' N N
N 2mi 2ni
=24%2Y | cos? + sin? ,
"'LIL <N> SH<N>—J

=242 N/4.

N
> st 247

il

Since n, = T/N by definition, we may simplify the result to:

N A 2 TZ

R A6
,;' SN (A6)
In the case of modulation at the Nyquist frequency, the sum
in equation (AS) has only a single term which has a value
of 1 for the cosine phase modulation we are considering. In
this case: T s? = (427?)/2.

Now the first sum in equation (A4) is two times the
covariance between the signal 5; and the deviations of the
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observed values from the no-signal mean, (o, — n;). Let us
refer to this covariance as C,. When no signal is present
(so that o, = n, +¢,),

N
( 1 = Z Sl[:ll;
i1

since we have assumed that the noise ¢, is independent of the
signal, this quantity has an expected value of zero. When the
signal is present (so that o, =n,+ 5, + &,

N N
Co= Y s+ 3 sk

it P=1
in addition to the first term (which has an expected value of
z¢ro), there is a second constant term, which has a value of
AT?2N from cquation (A6). The variance C, is the same
whether or not the signal is present, and is just the variance
of the term £¥ s.,. This variance in turn is just the sum
of the variances of the individual terms s¢,. We may
therefore write:

using the definition of o, and the result of equation (A6).
Remembering again that n, = T/N, the result may be ex-
pressed as:

, A 272

o’

TN (A7)

VR 3175~

905

Thus we see that:

A*T?
L,—Ly=K, <2C1 - ’>;

2N

which has an expected value of —K,(4*T%2N) when no
signal is present and expected value of K;(4°T?%2N) in the
presence of the signal. The variance of the quantity (L, — L,)
does not depend on the presence of the signal and is equal
to 4K? times o2, Since the presence of the signal affects only
the sign of the expected value of (L, — L,), the signal-to-noise
ratio does not depend on the presence of the signal and is:
K,0.542 TN !
SNR =120 0 20
2K o,
which by substitution of the value of o, from equation (A7)
becomes

_K0S4'T*N !
K, ATN-'J2T

Since this does not depend on N, the proof is complete.

The only part of our proof which depended on N being
a multiple of 4 was the calculation of ¥_,s? which resulted
in equation (A6). It was noted above that this quantity has
a value of 42T?/2 for the case of Nyquist sampling. Note
that this a factor of 2 larger than what would be obtained
by simply substituting N =2 into equation (A6). Because
this quantity is also the expected value of C,, the log of the
likelihood ratio, (L, — L,), is proportional to it. In addition,
the variance o, is proportional to ¥ s2. By recomputing
the signal-to-noise ratio using these revised values, it is easy
to show that it has a value \/2 higher than for the non-
Nyquist case.



